Meteor (missile)

Meteor is an active radar guided beyond-visual-range air-to-air missile (BVRAAM) being developed by MBDA. Meteor will offer a multi-shot capability against long range manoeuvring targets in a heavy electronic countermeasures (ECM) environment with range in excess of 100 km.

It is intended to equip the Eurofighter Typhoons of the United Kingdom Royal Air Force (RAF) and the Royal Saudi Air Force, Germany's Luftwaffe, Spain's Ejército del Aire and Italy's Aeronautica Militare Italiana, British and Italian F-35s, Dassault Rafale of French Armée de l'air, the Saab JAS 39 Gripen of the Swedish Air Force, and the Dassault Rafale of the Egyptian Air Force and the Qatar Air Force.

It is scheduled to enter service for with the RAF and with the Swedish Air Force in 2015, possibly with the SwAF as the first operator of the missile due to most testing having been done on the JAS-39. According to MBDA, Meteor has three to six times the kinematic performance of current air-air missiles of its type. The key to Meteor's performance is a throttleable ducted rocket (ramjet) manufactured by Bayern-Chemie of Germany.

Meteor (missile)
Class Missile
Type Air to Air
Manufacturer MBDA
Origin United Kingdom - UK (Great Britain)
Country Name Origin Year
United Kingdom - UK (Great Britain) 2013
Country Name Operational Year Retirement Year
United Kingdom - UK (Great Britain) View
ManufacturerName Production From Production To Quantity
MBDA View

At the 2003 Paris Air Show MBDA signed a contract with Bayern-Chemie/Protac worth in excess of EUR250m, for development, first lot production, and integrated logistics for the Meteor PSS.[60] Also at the show, MBDA and Thales formalised their agreement of June 2002 by signing a contract for EUR46m covering development and initial production of seekers for the RAF's missiles.

Over the eight months following contract signature, MBDA had determined the definitive external shape of Meteor. By the summer of 2003 manufacture had commenced of a full-scale model for aircraft fit checks as well as sub-scale models for wind tunnel tests scheduled for the autumn. The mid-mounted wings which had featured in the originally proposed configuration were removed. Following extensive pre-contract wind tunnel testing and MBDA's growing experience with guidance and control technologies for wingless configurations, such as ASRAAM, a wingless design was believed to offer the best solution to meeting the performance requirements. The control fins were also redesigned so that all four fins were now identical.

In August 2003 Saab Bofors Dynamics received a contract worth SEK450m to develop the PFS.

In October 2003 the first trial fit of a geometrically representative model was carried out on Eurofighter. Checks were successfully carried out on the underfuselage semi-recessed, long-stroke Missile Eject Launchers, designed and manufactured by Flight Refuelling plc, and the underwing pylon-mounted rail-launchers. In November 2003 Saab Aerosystems received an order worth 435m Swedish Kronor from the FMV for the integration of Meteor onto Gripen. As prime contractor for the integration task Saab Aerosystems will be supported by Ericsson Microwave Systems, Saab Bofors Dynamics, and MBDA (UK).

In December 2003 MBDA and Saab Bofors Dynamics signed an enabling contract worth 485m kronor covering programme management, system level participation, participation in the development of seeker, guidance, and autopilot algorithms, development of missile software, development of test equipment, system proving activities, and the TBUS.

In April 2004 MBDA carried out fit checks on a Gripen at Saab's Linköping facility. This demonstrated the mechanical interfaces between the missile, the Flight Refuelling designed and manufactured Multi-Missile Launcher (MML) and the aircraft.

Wind tunnel tests had recently been completed at BAE Systems' facility at Warton, UK, and at ONERA in Modane, France. These tests successfully demonstrated the air intake operation and validated the modelled aerodynamic characteristics, confirming the configuration for the first flight trials.

In August 2004 Bayern-Chemie delivered the first inert PSS, to be used for structural testing, amongst other things.

By the summer of 2005 two inert missiles had been delivered to Modane to recommission the facility following major modifications intended to prepare it for the free-jet trials. These were planned to begin with a 'part-firing' before the French summer holidays to be followed by two full-scale firings later in the year. These would comprise a full end-to-end demonstration of the complete propulsion system at representative supersonic free flight conditions as a risk reduction exercise for the ALD firings, scheduled for the last quarter of 2005. During these tests a full-scale missile model fitted with a live PSS would be mounted on a moveable strut in the wind tunnel, allowing a series of incidence and sideslip manoeuvres to be conducted over the full duration of the PSS operation. The tests would demonstrate operation of the air intakes, the transition from boost to sustain propulsion, control of the sustain motor thrust, and provide data on the aerodynamic characteristics.

On 9 September 2005 the first flight of Meteor on board a French Navy F2 standard Rafale M was successfully carried out from the Centre d'Essais en Vol at Istres in southeast France. This was in preparation for a week-long series of trials from the nuclear-powered aircraft carrier Charles de Gaulle which commenced on 11 December 2005 in the Mediterranean. The Meteor trials were conducted at the end of a series of tests of other Rafale weapons including SCALP-EG, ASMP-A and MICA. Tests were carried out with two Ground Handling Training Missiles (GHTM) and an Environmental Data Gathering (EDG) missile fitted alternatively on an underwing rail-launcher or underfuselage eject launchers. The EDG is an instrumented missile representing all the dynamic properties of an operational missile in terms of size, weight, and aerodynamic shape. The trials were designed to measure the shock and vibration levels associated with the severe carrier operational environment. Around twenty catapult launches and full deck arrests were undertaken, along with a number of touch and go landings on the fightdeck to provide a fully comprehensive handling test of the aircraft while fitted with Meteor. The trials went so well that they were concluded a day earlier than planned.

On 13 December a separate campaign commenced in Sweden with flights of the Meteor avionics missile (GMA5) carried on the port wing outboard station of Gripen aircraft 39.101, which had been modified with Meteor-unique software. As with the EDG missile GMA5 represents all the dynamic properties of an operational missile but also interfaces electrically with the launch aircraft. These trials successfully verified mechanical, electrical, and functional interfaces between the missile and aircraft. This was the first in-flight trial of two-way communication between the missile and aircraft and was an important step in clearing the aircraft and missile for the ALD firings which had slipped into Spring 2006, due to the lack of winter daylight hours at the Vidsel Test Range in northern Sweden.

In a separate air-carry trial a Eurofighter of No. 17 (R) squadron RAF flew with two GHTMs on the forward underfuselage stations to assess how the aircraft handled during a series of manoeuvres.

On 21 January 2006 a range work-up was conducted at Vidsel, again with GMA5 mounted on 39.101. This successfully verified system communications and set-up between the aircraft and the test range in advance of the first firing.

The first ALD firing took place on 9 May 2006 from a JAS 39 Gripen flying at an altitude of 7,000 m. The missile was launched from the port underwing MML, separating safely from the launch aircraft as the integrated booster accelerated the missile to over Mach 2.0 in around two seconds. However, after a successful boost the missile failed to transition to the sustain phase of flight. The missile continued under boost impulse, gradually decelerating until broken up, on command from the ground. Despite this problem telemetry was gathered throughout the full duration of the flight. The missile debris was recovered and the air intakes were found to be still closed.

The problem was traced to a timing issue in the gas generator valve control unit software, which was developed by a Bayern-Chemie subcontractor. Following modification a repeat of the first trial took place on 20 May 2006 and was a complete success. During the sustain phase the missile carried out a series of pre-programmed manoeuvres, under autopilot control, representative of the mid-course and endgame phases of an engagement. The flight lasted just under a minute and ended again with the successful operation of the break-up system which destroyed the missile within the range boundary.

The first trial of a flight standard functional seeker was carried out on 30 June 2006. The Seeker Data Gathering (SDG) missile was carried under the wing of Gripen. The SDG missile has no propulsion system or warhead but contains operational missile subsystems and telemetry systems. The flight lasted approximately 1.5 hours, allowing data to be gathered over a variety of different flight conditions. These data will be used in support of the third Key Milestone. This marked the start of a two-year seeker development programme which will conclude with the first guided firing, currently scheduled for 2008 from Gripen. This programme will gather clutter data and demonstrate capabilities such as transfer alignment and target tracking in clear air and in the presence of ECM.

On 5 September 2006 the third and final ALD firing was successfully conducted. The launch conditions were the same as the first two firings but the missile flew a different flight profile.

Flight trials will continue in mid-2008 with control and dispersion firings to be conducted in the Hebrides off northwest Scotland. A series of 10 guided firings will follow in 2008.

The Eurofighter Typhoon was originally scheduled to join the Meteor trials effort in 2006 but no integration contract or funding has yet been agreed. Eurofighter claims that the Block 8 aircraft, scheduled for delivery from 2007, will be fully compatible with Meteor but the CAPTOR radar will not be integrated with Meteor's datalink, requiring an additional processor card. Meteor will be delayed until the final Tranche 3 deliveries, which are scheduled to run from 2012/13 to 2017. Most of the trials effort is already being conducted on Gripen and Saab is keen to take on as much of the work as possible. Consideration is also being given to using Rafale or a modified Tornado F3. MBDA have said that the development plan is completely independent of the launch platform and decisions on allocation of aircraft types are made by the customer.

The UK NAO Major Projects Report 2006 reported a 12-month delay in the Meteor programme, pushing the expected in service date back to August 2013. The Chief of Defence Procurement was reported as saying that this was nothing to do with the missile itself, "Meteor is actually going very well." and the lack of Eurofighter aircraft for the integration work was the main reason for the slip. The Minister of Defence Procurement, Lord Drayson, said "I regard this as a Eurofighter Gmbh problem." It was reported by Jane's Information Group that this delay could lead to the RAF operating AMRAAM to a point where stocks of airworthy missiles become low.

On 28 April 2015, French Ministry Of Defense, Dassault Aviation and MBDA proceeded with the first guided launch of a Meteor from the Dassault Rafale against an aerial target. The test, performed by a Rafale flying from the DGA Essais en Vol site of Cazaux, was successfully completed in a zone of the DGA Essais de Missiles site of Biscarrosse.

Type Beyond visual range air-to-air missile
Service history
In service Not yet in service; development to be completed in 2013.
Production history
Manufacturer MBDA
Unit cost GBP 1,000,000 (estimated in 2003)
Specifications
Weight 185?kg (407?lb)
Length 3.65 m (12 ft 0 in)
Diameter 0.178 m (7.0 in)
Warhead High explosive blast-fragmentation
Detonation
mechanism
Proximity/impact fuze
Engine Throttleable ducted rocket
Operational
range
from 100-300+?km(63-187+mi)
Speed over Mach 4
Guidance
system
Inertial guidance, mid-course updatevia datalink, terminal active radar homing
Launch
platform
Eurofighter Typhoon
Dassault Rafale
Saab JAS 39 Gripen
F-35 (Pending)

End notes